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ABSTRACU 

Numerical results of time integration of divergent barotropic primitive equations by a quasi-Lagrangian ad- 
vective scheme, without smoothing, show that the proposed model has the desired property of conserving total 
energy and potential vorticity following a particle. A scheme t o  forecast boundary conditions in a manner similar 
t o  that in the interior is incorporated which significantly improves the results. The tests are made utilizing a large 
amplitude sinusoidal perturbation on a basic current as the initial state. Tests are carried out by performing the 
integration for 8 days. 

It is now being recognized from recent studies that the 
time integration of nonlinear primitive equations must be 
carried out with proper care for integral constraints of 
the problem. Grammeltvedt (1969) has discussed com- 
putational stability of various finite-difference analogs 
of so-called divergent barotropic primitive equations. He 
concluded that the introduction of artificial viscosity in 
finite-difference equations suppresses the nonlinear in- 
stability. For instance, Shuman and Vanderman (1966) 
were able to  integrate this model by introducing a nine- 
point differencing scheme for nonlinear terms. Our main 
purpose here, however, is to develop a short-range fore- 
cast model for nonlinear primitive equations without 
introducing any explicit artificial viscosity in the finite- 
difference equations. 

Leith (1965) discussed stability of one- and two- 
dimensional Lagrangian advective schemes for long-period 
time integration of a six-level primitive equation model. 
elkland's (1965) two-level model predicted baroclinic 
development with some success, but it showed irregu- 
larities in the absence of a smoothing procedure. Krish- 
namurti (1962) presented a time integration, carried 
over a period of 2 days, of the divergent barotropic 
primitive equations by a quasi-Lagrangian advective 
scheme that was computationally stable; a five-level 
model was used by Krishnamurti (1969) to predict the 
three-dimensional structure of the atmosphere in the 
region of the intertropical convergence zone by t.his 
scheme. I n  this paper, an improved form of quasi-la- 
grangian advective scheme is presented which conserves 
total energy and potential vorticity following a particle, 
without any smoothing, for a period of over a week. 
Our scheme differs from earlier formulations (Krish- 
namurti 1962) mainly in the manner of treatment of the 
velocity fields on the northern and southern boundaries 
and in the use of a high-order interpolation polynomial 
for quasi-Lagrangian advection. A scheme to forecast 
the velocity field on the northern (southern) boundary 

in a manner similar to that in the interior, which does not 
involve any assumption of values outside the boundary 
likc that of symmetry, is discussed in section 4. The 
introduction of a nine-point Lagrangian interpolation 
scheme was found to improve significantly the conserva- 
tion of potential vorticity. The computational stability 
of this interpolation scheme is discussed in section 2. 
The testing of our scheme is carried out using a large- 
amplitude perturbation superimposed on a zonal field of 
geopotential (2). Initially, zonal and meridional com- 
ponents of velocity are determined geostrophically. 
The quasi-Lagrangian advective scheme used is discussed 
in section 3. 

BUTATIONAL SBASULl Off THE PROPOSED 
ADYECUOVE SCHEME 

The quasi-Lagrangian advective scheme proposed for 
the time integration of the divergent barotropic primitive 
equations is based on fundamental niechanical principles 
of physics. It is well known that if a particle has a velocity 
u1 at time t and constant acceleration du/dt=a, then the 
distance S covered by it and the velociLy u2 attained by it 
after a time interval At are 

and 
u2=uI 4- aAt . 

Likewise, if F is any dependent variable of the problem 
dF/dt = b, 

Fz = F1-t- b At (3) 

where b is in general a known linear function of dependent 
variables of the problem. 

Leith (1965) discussed computational stability of the 
nonlinear advective terms of equation (3) for two-dimen- 
sional motion : 

dF dF uaF aaF -=-++----+--=o (4) d t  at ax ay 
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minimum for the points near the center (for example, see 
Householder 1953). Since our time step is of the order of a 
few minutes (linear theory), the particle a t  P ,  is always 
found near the center, and thus this interpolation is ex- 
pected to be satisfactory. This also implies that the trajec- 
tory over which we integrate equations (1) and ( 2 )  is 
small, which should be the case. 

Use of the interpolation polynomial (7) in (5), after 
some manipulation, gives : 

+ 2F23-F33) FIGURE 1.-Nine points for Lagrangian interpolation. A particle 
originally a t  P at time t arrives at Q a t  time t + A t .  +$ (F11 -Fa1 -2F12+2F32+F13- F33) 

r”J2 + (pi1 - 2FZ 1 + F31- 2Fiz + 4F22 - 2F32 f Fi 3 
v - 

where u and v are components of velocity along the x and y 
axes, respectively. 

Initially, F is known at  all grid points (fig. 1). For 
the time integration of equation (4), use is made of 
equation (1) to locate position P r . i  of the particle so that 

where all terms on the right-hand side are to be evaluated 
a t  time=n, y=uAtlAx, and 6=vAtJAy. Substitution of a 

Fourier term in equation g;ves 
it-may arrive a t  a grid point Qr,i after a time interval 
At (see section 3). Equation (2) gives future values of 
F,, as: 

F,”,’= FP,”, where G is the amplification factor; (5) 

where superscripts denote time steps. An interpolation 
scheme is required to find FP;,. Leith (1965) used a quad- 
ratic interpolation function: 

F(z,  y)=a+bx+cy+dx2+ey2. (6) 

G=1-i[7 sin a+8 sin @-yZ6 sin @(’- cos a) 
-782 sin a(l-cos p)]-y6 sin a sin p 

+yZ(cos a- 1) +82(cos p- 1) +y262(cos a cos p 
-cos p-cos a+1) 

For computational stability with the interpolation formula 
(6), it  was necessary to advect in two steps: 1) advection 
along the y axis and 2) advection along the x axis starting 
from the result of the first step. It is shown below that a 
one-step advective scheme can be used if the nine-point 
Lagrangian interpolation (7) is used instead of interpola- 
tion (6). 

A discussion of a nine-point Lagrangian interpolation 
will be presented her& According to this formula, a 
quantity F a t  P(x,y) is given by: 

(7) 

where a=kzAx, p=k,A. Here, k, and k, are any wave 
numbers in the x and the y directions, respectively. 

case 1, 6=0; 
For computational stability IGI I 1  : 

JGIz=l+r* (cos ~ ~ - 1 ) ~ + 2 y ~  (cos a-1)+y2 sin2 a, 
IC151 if Irl<%; 

/GI2= 1 +s4 (cos p- 1)2+262 (cos (3- 1) +y2 sin2 8, 
I G I I 1  if I S l I j 4 ;  and 

case 3, y=6=1; 
1G1=1. 

case 2 ,  y=O; 

It can be shown that for stability (IC1 5 l), 

u At j =  J-1 
where 

k=I+1 (x-x,) Z=J+1 (y-yl) 

k#: lZl 

wi,j= rl: ~ TI -* 

k = I - l  (Za-G) 1=J-l (Yj-YJ 

The interpolation polynomial (7) reproduces the exact 
solution at  the grid points used (fig. 1) , and the error is a These conditions are satisfied by the linear stability cri- 

375-632 0 - 70 - 6 
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FIGURE 3.-Three points for quadratic interpolation on the northern 
(southern) boundary. P is the origin of the particle a t  time t ,  
which arrives at Q2 a t  time t + A t .  

teria (9) for the primitive equations discussed in section 3; 

In the numerical experiment, the maximum time step 
was estimated every hour from (9). 

Boundary conditions for the divergent barotropic primi- 
tive gquations are discussed in section 4 where cyclic con- 
tinuity is assumed on the eastern and western boundaries. 
On the northern (southern) boundary, a nine-point Lagran- 
gian interpolation scheme cannot be used, since F is not 
known outside this boundary. A one-dimensional second- 
order (quadratic) Lagrangian interpolation when substi- 
tuted in (5 )  gives (see fig. 2): 

The amplification factor Q, was derived by Leith (1965) ; 

(G',(2= l+(l--y2) (1-cos a)2. 

The scheme is stable if IyI 51. 
For small values of a, 

The phase truncation error for short waves is nearly the 
same for both interpolation polynomials, c11(%)yd in each 
time step, and exceeds the amplitude truncation error in 
the case of quadratic interpolation. 

Equations of motion for the two-dimensional divergent 
0ar0 tropic model am : 

and 

where 

Here, u and v are components of velocity along the x (east) 
and y (north) axes, respectively, t is time, m is the map fac- 
tor, and j is the Coriolis parameter. Initially, u, v,  and z 
are known at all grid points. Initial values of A, B, and G 
are calculated from the right-hand side of equations (E), 
(13), and (14). For the time integration of the equations, 
we locate the position of the particle (Pi ,  j )  a t  t=Q (fig. 1) 
so that it may arrive at  a grid point &, at t= t+At .  The 
first guess for the location of P ,  is obtained by using 
equation (1); 

and (W 

~ f l ! j = - ~ y j Q t  -3 1 Ayj(Qt)2 

1 yE!j= -VyjAt-Z e 5 ( A t ) 2  

Use of a linear interpolation polynomial (points Q1 and where the following notation is used to define a quantity 
Qz in fig. 2) in equation (5 )  gives , p time step number. S=S" f j z coordinate v ooordlnate 

Once the location of P ,  is known, the values of u, v, z, A, F," +I= F:+ y [Fz - FI] . 

The amplification factor GL is 

1 GLp= 1 - 2y(l- cos a) +2r2(1- cos a). 

The scheme is stable if IyI I 1. 
For small values of a, 

1 "1-2 ya2. 

B, and C may be interpolated a t  P ,  5 .  

tion (2); 
A forward difference in time is carried out using equa- 

The linear interpolation scheme on the northern (south- 
ern) boundary gave better results in the time integration 
of our model than the quadratic interpolation. This may 
be partly due to the fact that the truncation error, equa- 

& j ,  and 67:f5 are evaluated from Wuations (I2), 
( 1 3 ) J  and (141, respectively, and a second guess for the 
location of P::ip, is obtained using equation (1). Thus, 

1 
tion (lo), in amplitude for small-scale waves introduced xP?:~= - u e ; j A t - ~  APy!j(At)2 
by quadratic interpolation is smaller than that introduced and (17) 
by linear interpolation, equation (1 1) ; in other words, 
linear interpolation damps short waves more efficiently. 

1 
2 2/P!:j= -VPtjAt--  BE!j(At)2. 
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and the corresponding accelerations can be obtained from 
equations (12), (13), and (14). 

An implicit iterative scheme is introduced a t  this stage, 
utilizing the nth guess for u, v, and z a t  time ( t + A t ) .  
The new guess defining the position of particle Pt,i  at 
time (t)  is given by 

Equations (19) are a combination of equations (1) and (2). 
The corresponding velocities are obtained using equations 
(18), that is, 

Since we now have the (n+l) guess for Pi,5,  u, v, and z, 
equations (18) and (19) can be iterated. Numerical 
integrations were carried out for a period of 24 hr using 
one, three, five, and seven scans. The results were similar. 
Small-scale irregularities developed after 8 days of inte- 
gration with one scan. Similar results were obtained when 
three scans were used. Numerical results with one scan 
are presented in section 5. 

4. INITIAL AND BOUNDARY CONDITIONS OF A 
TEST EXPERIMENT 

The initial field of z is defined as 

where the first term on the right represents a geopotential 
field in geostrophic balance and the second term a pertur- 
bation superimposed in the x and y directions. In  (21) 
yM and yo are y coordinates of the northern and southern 
boundaries, respectively. The initial fields of u and v are 
determined assuming geostrophic balance. 

For the purpose of forecasting on the boundary, cyclic 
continuity is assumed on the eastern and wistern bound- 

aries. In  the following, our scheme for forecasting on the 
northern and southern boundaries is presented. Since 
v=O initially at  a l l '  points on these boundaries, the 
particle that lies a t  point P (fig. 2) a t  t=O so as to reach a 
grid point Q2 after time t=At  can be either to the east 
or west of Q2,  and the position of P can be determined 
from equation (1) .  The interpolating polynomial for 
determining values of variables u, v, etc. a t  P on the 
boundary was discussed in section 2. New values of u a t  
Q2 are found from equation (2), and z is evaluated assuming 
geostrophic balance. 

Since a t  Q2 

= A t  

if v and B are both zero initially a t  all points on the 
northern (southern) boundary, they will remain zero for 
all time. To evaluate C a t  Q2 on the northern (southern) 
boundary (which involves values across t,he boundary, 
see equation (14)), use is made of equation (18), since z 
at P a t  t=O and z at Qz a t  t=At  are known. An iterative 
scheme similar to that in the interior can be used on the 
northern (southern) boundary, if geostrophy is assumed, 
co determine z, and (18) is used to determine C. This 
iterative scheme sigdcant ly  improved o w  results. These 
boundary conditions imply that equations (12) through 
(14) should conserve total energy, total mass, and poten- 
tial vorticity following a particle. 

5. NUMERICAL RESULTS 

The initial field of z given by equation (21) is shown 
in figure SA, and the corresponding field of potential 
vorticity in figure 4A. The southern boundary is a t  30" 
N. and the northern at  45" N. The maximum in potential 
vorticityin the troughis 5.0X lO-*m-lsec-', and theminimum 
in the ridge is about 2.0 X 1 OM* m-l sec- '. A separate maximum 
in potential vorticity (4.9X10-* m-I sec-I) is located in the 
extreme northwestern portion of the grid, and a minimum 
south of the trough. Figures 3B and 3C give the field of 
z after 4 and 8 days, respectively, and figures 4B and 4C 
give the same for potential vorticity. The field of z, 
which is quite smooth in figure 3B, shows small-scale 
irregularities after 8 days of integration near the northern 
and southern boundaries (fig. 3C), though it is still 
smooth in the interior. During the next 48 hr (not shown), 
this small-scale feature propagates inward, though the 
large-scale feature still remains distinct. 

Persistence of the maxima and minima in figures 4A 
to 4C indicates that the model does conserve potential 
vorticity following a particle. Figure 5 shows the variation 
of total energy and mean potential vorticity with time, 
and their values on each day are listed in table 1. The 
largest variation in total energy on any day is within 0.1 
percent and in mean potential vorticity within 2 percent. 
Even after 8 days, no appreciable change is observed in 
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FIQURE 3.-(A) initial distribution of height of the free surface 
(2); (B) the forecast field of 2 a t  4 days; and (C) the forecast 
field of a t  8 days. Isolines are labeled in meters; the shading 
interval is 10 m. 

FIGURE 4.-(A) initial distribution of potential vorticity; (B) the 
distribution of potential vorticity a t  4 days; and (C) the distri- 
bution of potential vorticity at 8 days. Isolines are labeled in 
10-8 m-1 sec-I. 
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-; without smoothing. The advective scheme used conserves 
- -! total energy and potential vorticity following a particle. 

One significant advantage of this formulation is that we 

Y E 1119 ,---/- -4 < horizontal, it is conceptually possible to extend the use 

need not calculate nonlinear terms explicitly (in finite 
.=----A 3 3 4  difference form). Since large-scale motions are quasi- 

3 m  E of the above model to time integration of the three- 

- 
0 

332 

)--- 
--o- ., ””t , , , , , , , , , , 1”’ i dimensional primitive equations, assuming that nonlinear 

effects involving vertical motion are not large. We shall I 2  3 4 J 6 7 a 9 IO 
DAY - - 

FIGURE 5.-Variation of total energy (solid line) and mean poten- present the resuits Of such a study for a fine-mesh primitive 
tial vorticity (dashed line) with time. Maximum variation in 
total energy is of the order of 0.1 percent and in mean potential 
vorticity less than 2 percent. 

equation model in a subsequent paper. 
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TABLE 1.-Mean potential vorticity (Q), total energy ( E ) ,  and root- 
mean-square divergence (D)  as a func t ion  of t ime 

Day Q E n 
(lO-sm-~see-I) (10~m$cc-~) (lo-’sec-q 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.2908 
3.2912 
3.2985 
3.3006 
3.3106 
3.3107 
3.3205 
3.3256 
3.3392 
3.3376 
3.3420 

8.2133 
8.2113 
8.2090 
8.2044 
8.2051 
8.2071 
8.2093 
8.2042 
8.2061 
8.2101 
9.2127 

4.8697 
5.0359 
4.1578 
4.1430 
4.68SO 
4.2749 
3.1180 
4.5193 
3.8757 
4.6244 

these quantities. The last column in table 1 gives the 
root-mean-square divergence, which shows little variation 
and remains small throughout the integration period. 
Shuman and Vanderman (1966) considered this desirable 
for computational stability. 

6. CONCLUSION 

The numerical results presented show that the pro- 
posed quasi-Lagrangian advectrive scheme can be used 
for time integration of the two-dimensional divergent 
barotropic primitive equations for a period of over a week 
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